154 research outputs found

    Congestion behavior and tolls in a bottleneck model with stochastic capacity

    Get PDF
    In this paper we investigate a bottleneck model in which the capacity of the bottleneck is assumed stochastic and follows a uniform distribution. The commuters’ departure time choice is assumed to follow the user equilibrium principle according to mean trip cost. The analytical solution of the proposed model is derived. Both the analytical and numerical results show that the capacity variability would indeed change the commuters’ travel behavior by increasing the mean trip cost and lengthening the peak period. We then design congestion pricing schemes within the framework of the new stochastic bottleneck model, for both a time-varying toll and a single-step coarse toll, and prove that the proposed piecewise time-varying toll can effectively cut down, and even eliminate, the queues behind the bottleneck. We also find that the single-step coarse toll could either advance or postpone the earliest departure time. Furthermore, the numerical results show that the proposed pricing schemes can indeed improve the efficiency of the stochastic bottleneck through decreasing the system’s total travel cost

    Development of a Surface Plasmon Resonance Biosensor for Real-Time Detection of Osteogenic Differentiation in Live Mesenchymal Stem Cells

    Get PDF
    Surface plasmon resonance (SPR) biosensors have been recognized as a useful tool and widely used for real-time dynamic analysis of molecular binding affinity because of its high sensitivity to the change of the refractive index of tested objects. The conventional methods in molecular biology to evaluate cell differentiation require cell lysis or fixation, which make investigation in live cells difficult. In addition, a certain amount of cells are needed in order to obtain adequate protein or messenger ribonucleic acid for various assays. To overcome this limitation, we developed a unique SPR-based biosensing apparatus for real-time detection of cell differentiation in live cells according to the differences of optical properties of the cell surface caused by specific antigen-antibody binding. In this study, we reported the application of this SPR-based system to evaluate the osteogenic differentiation of mesenchymal stem cells (MSCs). OB-cadherin expression, which is up-regulated during osteogenic differentiation, was targeted under our SPR system by conjugating antibodies against OB-cadherin on the surface of the object. A linear relationship between the duration of osteogenic induction and the difference in refractive angle shift with very high correlation coefficient was observed. To sum up, the SPR system and the protocol reported in this study can rapidly and accurately define osteogenic maturation of MSCs in a live cell and label-free manner with no need of cell breakage. This SPR biosensor will facilitate future advances in a vast array of fields in biomedical research and medical diagnosis

    Enhanced Neointima Formation Following Arterial Injury in Immune Deficient Rag-1−/− Mice Is Attenuated by Adoptive Transfer of CD8+ T cells

    Get PDF
    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased. Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD8−/− or CD4−/− mice, respectively, to immune-deficient Rag-1−/− mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1−/− mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-1−/− mice without cell transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD4−/− mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type involved in inhibiting neointima formation

    Stem Cell Factor SALL4 Represses the Transcriptions of PTEN and SALL1 through an Epigenetic Repressor Complex

    Get PDF
    Background The embryonic stem cell (ESC) factor, SALL4, plays an essential role in both development and leukemogenesis. It is a unique gene that is involved in self-renewal in ESC and leukemic stem cell (LSC).Methodology/Principal Findings To understand the mechanism(s) of SALL4 function(s), we sought to identify SALL4-associated proteins by tandem mass spectrometry. Components of a transcription repressor Mi-2/Nucleosome Remodeling and Deacetylase (NuRD) complex were found in the SALL4-immunocomplexes with histone deacetylase (HDAC) activity in ESCs with endogenous SALL4 expression and 293T cells overexpressing SALL4. The SALL4-mediated transcriptional regulation was tested on two potential target genes: PTEN and SALL1. Both genes were confirmed as SALL4 downstream targets by chromatin-immunoprecipitation, and their expression levels, when tested by quantitative reverse transcription polymerase chain reaction (qRT-PCR), were decreased in 293T cells overexpressing SALL4. Moreover, SALL4 binding sites at the promoter regions of PTEN and SALL1 were co-occupied by NuRD components, suggesting that SALL4 represses the transcriptions of PTEN and SALL1 through its interactions with the Mi-2/NuRD complex. The in vivo repressive effect(s) of SALL4 were evaluated in SALL4 transgenic mice, where decreased expressions of PTEN and SALL1 were associated with myeloid leukemia and cystic kidneys, respectively.Conclusions/Significance In summary, we are the first to demonstrate that stem cell protein SALL4 represses its target genes, PTEN and SALL1, through the epigenetic repressor Mi-2/NuRD complex. Our novel finding provides insight into the mechanism(s) of SALL4 functions in kidney development and leukemogenesis

    Genome-Wide Association Study of Young-Onset Hypertension in the Han Chinese Population of Taiwan

    Get PDF
    Young-onset hypertension has a stronger genetic component than late-onset counterpart; thus, the identification of genes related to its susceptibility is a critical issue for the prevention and management of this disease. We carried out a two-stage association scan to map young-onset hypertension susceptibility genes. The first-stage analysis, a genome-wide association study, analyzed 175 matched case-control pairs; the second-stage analysis, a confirmatory association study, verified the results at the first stage based on a total of 1,008 patients and 1,008 controls. Single-locus association tests, multilocus association tests and pair-wise gene-gene interaction tests were performed to identify young-onset hypertension susceptibility genes. After considering stringent adjustments of multiple testing, gene annotation and single-nucleotide polymorphism (SNP) quality, four SNPs from two SNP triplets with strong association signals (−log10(p)>7) and 13 SNPs from 8 interactive SNP pairs with strong interactive signals (−log10(p)>8) were carefully re-examined. The confirmatory study verified the association for a SNP quartet 219 kb and 495 kb downstream of LOC344371 (a hypothetical gene) and RASGRP3 on chromosome 2p22.3, respectively. The latter has been implicated in the abnormal vascular responsiveness to endothelin-1 and angiotensin II in diabetic-hypertensive rats. Intrinsic synergy involving IMPG1 on chromosome 6q14.2-q15 was also verified. IMPG1 encodes interphotoreceptor matrix proteoglycan 1 which has cation binding capacity. The genes are novel hypertension targets identified in this first genome-wide hypertension association study of the Han Chinese population

    Interplay of Nkx3.2, Sox9 and Pax3 Regulates Chondrogenic Differentiation of Muscle Progenitor Cells

    Get PDF
    Muscle satellite cells make up a stem cell population that is capable of differentiating into myocytes and contributing to muscle regeneration upon injury. In this work we investigate the mechanism by which these muscle progenitor cells adopt an alternative cell fate, the cartilage fate. We show that chick muscle satellite cells that normally would undergo myogenesis can be converted to express cartilage matrix proteins in vitro when cultured in chondrogenic medium containing TGFß3 or BMP2. In the meantime, the myogenic program is repressed, suggesting that muscle satellite cells have undergone chondrogenic differentiation. Furthermore, ectopic expression of the myogenic factor Pax3 prevents chondrogenesis in these cells, while chondrogenic factors Nkx3.2 and Sox9 act downstream of TGFß or BMP2 to promote this cell fate transition. We found that Nkx3.2 and Sox9 repress the activity of the Pax3 promoter and that Nkx3.2 acts as a transcriptional repressor in this process. Importantly, a reverse function mutant of Nkx3.2 blocks the ability of Sox9 to both inhibit myogenesis and induce chondrogenesis, suggesting that Nkx3.2 is required for Sox9 to promote chondrogenic differentiation in satellite cells. Finally, we found that in an in vivo mouse model of fracture healing where muscle progenitor cells were lineage-traced, Nkx3.2 and Sox9 are significantly upregulated while Pax3 is significantly downregulated in the muscle progenitor cells that give rise to chondrocytes during fracture repair. Thus our in vitro and in vivo analyses suggest that the balance of Pax3, Nkx3.2 and Sox9 may act as a molecular switch during the chondrogenic differentiation of muscle progenitor cells, which may be important for fracture healing

    Plasticity of the Muscle Stem Cell Microenvironment

    Get PDF
    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes

    Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as Hypertension Susceptibility Genes in Han Chinese with a Genome-Wide Gene-Based Association Study

    Get PDF
    Hypertension is a complex disorder with high prevalence rates all over the world. We conducted the first genome-wide gene-based association scan for hypertension in a Han Chinese population. By analyzing genome-wide single-nucleotide-polymorphism data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip, 100 susceptibility genes for hypertension were identified and also validated with permutation tests. Seventeen of the 100 genes exhibited differential allelic and expression distributions between patient and control groups. These genes provided a good molecular signature for classifying hypertensive patients and normotensive controls. Among the 17 genes, IGF1, SLC4A4, WWOX, and SFMBT1 were not only identified by our gene-based association scan and gene expression analysis but were also replicated by a gene-based association analysis of the Hong Kong Hypertension Study. Moreover, cis-acting expression quantitative trait loci associated with the differentially expressed genes were found and linked to hypertension. IGF1, which encodes insulin-like growth factor 1, is associated with cardiovascular disorders, metabolic syndrome, decreased body weight/size, and changes of insulin levels in mice. SLC4A4, which encodes the electrogenic sodium bicarbonate cotransporter 1, is associated with decreased body weight/size and abnormal ion homeostasis in mice. WWOX, which encodes the WW domain-containing protein, is related to hypoglycemia and hyperphosphatemia. SFMBT1, which encodes the scm-like with four MBT domains protein 1, is a novel hypertension gene. GRB14, TMEM56 and KIAA1797 exhibited highly significant differential allelic and expressed distributions between hypertensive patients and normotensive controls. GRB14 was also found relevant to blood pressure in a previous genetic association study in East Asian populations. TMEM56 and KIAA1797 may be specific to Taiwanese populations, because they were not validated by the two replication studies. Identification of these genes enriches the collection of hypertension susceptibility genes, thereby shedding light on the etiology of hypertension in Han Chinese populations

    Bcl-2-regulated cell death signalling in the prevention of autoimmunity

    Get PDF
    Cell death mediated through the intrinsic, Bcl-2-regulated mitochondrial apoptosis signalling pathway is critical for lymphocyte development and the establishment of central and maintenance of peripheral tolerance. Defects in Bcl-2-regulated cell death signalling have been reported to cause or correlate with autoimmunity in mice and men. This review focuses on the role of Bcl-2 family proteins implicated in the development of autoimmune disorders and their potential as targets for therapeutic intervention
    corecore